## 2021

( July )

## ECONOMICS

## ( Honours )

## (Mathematics for Economist )

Marks : 75
Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit
UNIT—I

1. (a) Define set. Explain different operations of sets with examples.
$2+3=5$
(b) Given the sets

$$
\begin{aligned}
& A=\{1,2,3,4\} \\
& B=\{2,4,5,6\} \\
& C=\{0,3,4,7,8\}
\end{aligned}
$$

Prove the De Morgan's law for union and intersection.
(c) In a class of 25 students of economics and politics, 12 students have taken economics. Out of these 8 have taken economics but not politics. Find the number of students who have taken economics and politics and those who have taken politics but not economics.
$3+3=6$
2. (a) Differentiate any three of the following with suitable examples : $3 \times 3=9$
(i) Linear and quadratic functions
(ii) Homogeneous and homothetic functions
(iii) Explicit and implicit functions
(iv) Domain and range of a function
(b) Find the equation of the straight line passing through the points $(3,-2)$ and $(-4,1)$. Also write down the gradient of the line.

## Unit-II

3. (a) What is matrix? Mention some of its properties. $1+5=6$
(b) Solve the given simultaneous equations by matrix inversion method :

$$
\begin{aligned}
2 x_{1}+3 x_{2}-x_{3} & =15 \\
4 x_{2}+2 x_{3} & =16 \\
3 x_{1}+2 x_{2} & =18
\end{aligned}
$$

4. (a) State the Hawkins-Simon conditions for input/output analysis. What are its implications?
(b) Prove that $(A B C)^{T}=C^{T} B^{T} A^{T}$. Given

$$
A=\left[\begin{array}{ll}
2 & 1  \tag{4}\\
4 & 2
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 0 \\
1 & 5
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]
$$

(c) If

$$
A=\left[\begin{array}{ll}
8 & 4 \\
3 & 7
\end{array}\right], B=\left[\begin{array}{cc}
3 & -2 \\
1 & 5
\end{array}\right]
$$

find the matrix $C$, such that $2 A+4 B-3 C=0$, where 0 is a null matrix.
(d) Find the value of $k$, if $A$ is a singular matrix :

3

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & 3 & 8 \\
4 & 5 & k \\
2 & 2 & -2
\end{array}\right] \\
\text { UnIT-III }
\end{gathered}
$$

5. (a) Evaluate (any three) :
$3 \times 3=9$
(i) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
(ii) $\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$
(b) Find the first- and second-order partial derivatives of the following function :

$$
z=2 x^{3}+5 x^{2} y+x y^{2}+y^{2}
$$

Verify that

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}
$$

(c) $u=\left(3 x^{2}+5 y^{2}\right)^{5}$. Find $d u$.
UNIT—IV
7. (a) State the necessary and sufficient conditions for maximum and minimum values, and hence find the maximum and minimum values of the function $y=\frac{1}{3} x^{3}-3 x^{2}+8 x+10$.
(b) The demand equation for a manufacturer is given by $P=500-2 q$, and his average cost function is $0 \cdot 25 q+4+\frac{400}{q}$, where $q$ is output and $p$ is price. Determine-
(i) the level of output at which profit is maximized;
(ii) the price at which this occurs;
(iii) the maximum profit.
$4+3+2=9$
8. (a) The total cost associated with producing and marketing $x$ units of an item is given by

$$
C=0 \cdot 005 x^{3}-0 \cdot 02 x^{2}-30 x+3000
$$

Find AC at 10 units of output and MC at 3 units of output.
(b) The demand function is given by $q=\frac{20}{p+3}$. Calculate price elasticity of demand at price $p=2$ and also interpret the result.
Unit-V
9. (a) What is integration? Why is there a constant of integration?

$$
1+2=3
$$

(b) Find the integral of the following (any four) :
$3 \times 4=12$
(i) $\int\left(4 x^{3}+\frac{1}{\sqrt{x}}-3\right) d x$
(ii) $\int 4\left(e^{2 x}+x\right)\left(e^{2 x}+x^{2}\right)^{2} d x$
(iii) $\int \frac{8 x}{\left(2 x^{2}+1\right)} d x$
(iv) $\int x^{2} e^{x} d x$
(v) $\int x \cdot \log x d x$
(vi) $\int 10^{-x} d x$
10. (a) Evaluate :

$$
\int_{2}^{4} 3 x^{2}\left(x^{2}+1\right) d x
$$

(b) What is producer's surplus? If the production function is given by $Q=\sqrt{-4+4 p}$ and the market price is 10 , find the producer's surplus. $2+4=6$
(c) The demand and supply functions are $P_{d}=(6-q)^{2}$ and $P_{s}=14+q$ respectively. Find the consumer's surplus under perfect competition.

